首页> 外文OA文献 >Scheduling Light-trails in WDM Rings
【2h】

Scheduling Light-trails in WDM Rings

机译:调度WDm环中的光迹

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the problem of scheduling communication on optical WDM(wavelength division multiplexing) networks using the light-trails technology.We seek to design scheduling algorithms such that the given transmissionrequests can be scheduled using minimum number of wavelengths (opticalchannels). We provide algorithms and close lower bounds for two versions of theproblem on an $n$ processor linear array/ring network. In the {\em stationary}version, the pattern of transmissions (given) is assumed to not change overtime. For this, a simple lower bound is $c$, the congestion or the maximumtotal traffic required to pass through any link. We give an algorithm thatschedules the transmissions using $O(c+\log{n})$ wavelengths. We also show apattern for which $\Omega(c+\log{n}/\log\log{n})$ wavelengths are needed. Inthe {\em on-line} version, the transmissions arrive and depart dynamically, andmust be scheduled without upsetting the previously scheduled transmissions. Forthis case we give an on-line algorithm which has competitive ratio$\Theta(\log{n})$. We show that this is optimal in the sense that every on-linealgorithm must have competitive ratio $\Omega(\log{n})$. We also give analgorithm that appears to do well in simulation (for the classes of traffic weconsider), but which has competitive ratio between $\Omega(\log^2n/\log\log{n})$ and $O(\log^2n)$. We present detailed simulations of both ouralgorithms.
机译:我们考虑了使用光跟踪技术在光WDM(波分复用)​​网络上调度通信的问题。我们试图设计调度算法,以便可以使用最小数量的波长(光信道)来调度给定的传输请求。我们为$ n $处理器线性阵列/环网络上的两个版本的问题提供了算法和近似下界。在{静止}版本中,假定传输模式(给定)不会随时间变化。为此,简单的下限是$ c $,即通过任何链接所需的拥塞或最大总流量。我们给出一种使用$ O(c + \ log {n})$个波长来安排传输的算法。我们还显示了需要$ \ Omega(c + \ log {n} / \ log \ log {n})$波长的模式。在{\ em在线}版本中,传输是动态到达和离开的,并且必须在不破坏先前调度的传输的情况下进行调度。对于这种情况,我们给出一种在线算法,该算法具有竞争比$ \ Theta(\ log {n})$。我们证明这是最佳的,因为每个在线算法都必须具有竞争比$ \ Omega(\ log {n})$。我们还给出了似乎在模拟中效果很好的算法(对于我们考虑的流量类别),但是在$ \ Omega(\ log ^ 2n / \ log \ log {n})$和$ O(\ log ^ 2n)$。我们介绍了两种算法的详细模拟。

著录项

  • 作者

    Pal, Soumitra; Ranade, Abhiram;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号